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ABSTRACT 
The  capacity is determined for an optical channel  employing Pulse  Position  Modulation  (PPM)  and  an Avalanche 
PhotoDiode  (APD)  detector.  This channel is different from the usual  optical  channel  in that  the detector  output 
is characterized by a Webb-plus-Gaussian distribution,  not a Poisson distribution.  The  capacity is expressed as a 
function of the  PPM  order, slot  width,  laser  dead  time, average number of incident  signal and background  photons 
received, and  APD  parameters. Based on a system using a laser and  detector  proposed for X2000 second delivery, 
numerical  results  provide  upper  bounds  on the  data rate, level of background noise, and code rate  that  the channel 
can  support while operating at a given BER. For the  particular case studied, the capacity-maximizing PPM order is 
near 2048 for nighttime  reception and 16 for daytime  reception. Reed-Solomon  codes can  handle  background levels 
2.3 to 7.6 dB below the  ultimate level that can  be  handled by  codes operating at the Shannon  limit. 

1. INTRODUCTION 
The  capacity of a channel is the highest data  rate  it  can reliably support. Whenever the  data  rate is less than  the 
capacity of the channel,  there  exists  an  error-correcting code for the channel that  has  an  output  probability of error 
as small as desired, and conversely, whenever the  data  rate is  more than  the  capacity  the  probability of error is 
bounded away  from zero. 

The  capacity of the optical  channel  depends  on  many  factors,  including the modulation scheme, laser,  transmission 
medium,  photodetector,  and preamplifier. Unlike the bandlimited  additive  white  Gaussian noise (AWGN) channel  in 
which all performance-influencing factors  are relevant to  the channel capacity only in how they affect the bandwidth 
and signal-to-noise ratio,  there is not a  method to simplify the formulation of the capacity of the optical  channel 
to so few variables. For example, the capacity  depends  separately  on the signal and background  light levels, not 
simply their  ratio.  In  this  report,  the functional  dependence of the capacity is distilled to  the following six  major 
parameters: (I) the  PPM order M ,  (2) the laser pulse width T,, (3) the necessary dead  time between pulses T d ,  (4) 
the average  number of signal  photons  per pulse incident on the  detector A,, (5) the average  number of background 
photons  per  slot  incident  on the detector f i b ,  and (6)  the detector itself. These  parameters  are  represented by the 
vector ( M ,  fi,, f i b ,  T,, Td, detector),  and we  will write the capacity  as C = C ( M ,  A,, f i b ,  T,, T d ,  detector). For an APD 
detector, the  parameters used are  the  quantum efficiency 77, the ionization ratio k e f ,  noise temperature T ,  load 
resistance R, noise equivalent one-sided bandwidth B, bulk  leakage current I b ,  and surface leakage current I,. Not 
explicitly included in the functional  description of the capacity is the modulation  extinction ratio aer of the laser, 
which we fix at lo6 throughout  the  report. A description of these  parameters is contained  in [DS88,Mec86]. 

Numerical results in the  report  are based on  a  system using components  currently available and suggested by 
X2000 2nd delivery for a Mars-type mission. This includes a 1064nm  pulsed  Q-switched Neodymium-doped Yttrium 
Aluminum Garnet (Nd:YAG) laser, a super low K (SLiK) APD  detector  made by EG&G, where K is the ionization 
ratio,  and a transimpedance pre-amplifier. 

Future improvements  made in lasers and  detectors  can  be evaluated  with the methods  outlined  in this  report.  The 
increase  in  capacity  can  be  projected by re-evaluating the equations  with new ( M ,  fi,, f i b ,  T,, T d ,  detector)  parameters. 
These  results will be given in a future  report. 

The  research  described in this paper was carried  out at the Jet Propulsion  Laboratory,  California Institute of Technology, 
under a contract with the National Aeronautics and  Space  Administration. 
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Figure 1. An opticai  communications  system. 

In  the following section,  the  optical channel is described and  the  notation used in this  report is given. We also 
discuss the various units in which capacity may be expressed. Section 3 gives the  analytic  capacity  results, including 
derivations of the  capacity of PPM,  the probability of uncoded  symbol  error for the  APD  and ideal photon  counting 
detectors,  and implications of the converse of Shannon’s capacity theorem.  In Section 4 we give the numerical 
capacity results,  and in Section 5 we state conclusions and discuss future research needed in this  area. 

2. PRELIMINARIES 
2.1. Channel description and notation 
2.1.1. Encoder, laser modulator, optical channel 

Fig1  Channel  description, notation Discussion on the  units of capacity This  report concerns the communications 
system shown in Fig. 1. The information  bits U = (UI, . . . , U k )  are i.i.d. binary  random variables assumed to  take 
on the values 0 and 1 with  equal probability. The vector U is encoded to X = (X , ,  . . . , X n ) ,  a vector of n M-PPM 
symbols.  Each M-PPM symbol is a  number in (0, .  . . , M - l} (or equivalently, a block of log, M  bits, if M is a power 
of two).  There is one signaling slot,  and M - 1 nonsignaling slots for each M-PPM symbol. The symbol  indicates 
to  the modulator in which of the  M  time slots of length T, to pulse the  transmitting  laser. Between  each M-PPM 
symbol, the laser requires dead  time T d  to recharge  and  ready itself  for sending another pulse. The  laser is coupled to 
a telescope and pulses are  transmitted  through  the optical channel to  the receiving telescope, where  background light 
also enters.  In Fig. 1, the  transmitting telescope, free space,  background  light, and receiving telescope are  grouped 
under the  term  “Optical Channel.” 

2.1.2.  Detector 

At the receiver, light is  focussed on  a  photodetector, which we restrict to either  an  APD  or  an ideal photon  counter. 
The  detector  integrates over slot times to produce Y = (Y1, . . . ,Y,), where Yi = ( y i ~ ,  . . . , g i , ~ )  are  the M soft 
outputs for the  ith  M-PPM symbol, 1 5 i 5 n. The number of photons incident on a detector  from  an incident 
optical field of known intensity is a  Poisson  distributed  random variable [DS88]. The number of photons  absorbed by 
the  detector is equal to  the number of photons incident times the  quantum efficiency q of the  detector.  The secondary 
electrons at the  output of the  detector may have  a  more  complicated probability distribution  [Con72,McI72,WMC74]. 
In  this progress report, for simplicity we assume perfect timing  synchronization and  no inter-slot interference, which 
implies that  the number of absorbed  photons in each slot is independent of the number of photons  absorbed in all 
other  slots.  Recent work has  developed  a  method to combat inter-slot interference by using trellis-coded modulation 
[KY98, Sri981. 

2.1.3. PPM demodulator, decoder 

Typically, the individual slot statistics at the  output of the  detector  are not available to  the decoder.+  Instead, 
for 1 5 i 5 n, a PPM demodulator uses the M slot statistics of Yi to make an  M-PPM symbol decision Zi E 

+If individual slot statistics  are available to  the decoder, then  the capacity will be higher. 



( 0 , .  . . , M - 1) by choosing the slot within  each  symbol that maximizes the number of detected  photons,  or in case 
of a  tie, by randomly  choosing a slot among  those  with the maximum statistic. It has recently been  proven that 
this is the maximum likelihood rule for PPM detection when the  statistics  are governed by the  sum of a Webb  and 
Gaussian  deviates [VSS98]. Perhaps surprisingly, the maximum likelihood rule becomes  more  complicated than “pick 
the  largest” when the  detector  output is approximated by a Gaussian  distribution, in which a nonsignaling  slot has 
mean pb and variance 0; and  a signaling slot has  mean ,Ub + p ,  and variance uz + 0,”. We avoid this problem by not 
using the  Gaussian  approximations. 

2.2. The units of capacity 
This  report expresses the channel capacity in bits  per second because  ultimately  the  system designer wants to know 
how much data can  be  pumped  through  the  channel how quickly  using the given  power available. The laser properties, 
optics efficiency, pointing accuracy, and  space  and  atmospheric losses all affect C ,  but only through  their influence 
on fi,, f i b ,  Ts,  and Td. Hence we express the capacity as a function of the following parameters: 

c = C ( M ,  fi,, f i b ,  T,, Td, detector). 

The  units in  which C is expressed affect the  parameter values  which maximize C. This  fact, which might seem 
surprising at  first, implies that work on  maximizing  photon efficiency (e.g., [McE81,BKL82,Les83,Ham98,Ham99b]) 
does  not necessarily help determine  the maximum data  rate possible on the channel. 

2.2.1.  Bits per photon or bits per  channel  use 

A channel capacity of C bits  per  channel use can  be restated as C/A, bits  per signal photon, C/M bits per PPM slot 
(neglecting the  dead  time),  and C/(MTs + Td) bits  per second. The capacity in bits  per  photon  or  bits  per  channel 
use is not  bounded for  noiseless PPM, if perfect timing is assumed  [PPR81].  (Other  practical  constraints  bound 
it [McE81, Les831.) Intuitively, the reason is that by choosing increasing values of M and keeping the  slot  duration 
fixed, the  statistics governing the number of photons  detected in the signal slot remain the  same,  but  the  number 
of bits  per  symbol increases as log, M .  Thus,  the capacity in bits  per  photon (or bits  per channel use) increases as 
log, M ,  an unbounded  number as M increases. 

This  unbounded capacity in bits/photon is not  particularly useful, however, because it necessitates a low data 
rate  and wasted  power.  Lasers  on a spacecraft can have  power allocated to them  on a continual basis, at least  within 
the intervals of time  set aside for transmission to  earth.  This power  is  used primarily to charge the laser after  it  has 
fired a pulse. If the laser waits an extensive period of time between pulse firings, that power  is being  wasted.  From 
an information  theoretical standpoint,  the waste  can  be quantified by the lost entropy of the signal. The  information 
content of a set of signaling slots (ones) and  nonsignaling slots (zeroes) decreases as their  probabilities axe made more 
disparate. An increasing M means that  the information content per slot (or  per  unit  time) is decreasing, because 
M - 1 out of M of the  slots  contain zeroes. 

2.2.2.  Bits per second 

Instead of using an enormous value of M and  transmitting one  symbol, we would be  better off transmitting two (M/2)- 
PPM symbols in the same  amount of time  (assuming M >> Td/Ts), because  there is a potential for 2 log,(M/2)  bits 
received, as opposed to only  log, M bits. Neglecting dead  time,  the capacity of the errorless channel is log, M/M 
bits  per  slot, which  is maximized when M = 3. (The noninteger  maximum  occurs when M = e.) 

The  optimum value of M may be much higher than  three when the required dead  time is taken  into  account.  On 
an error-free channel  using M-PPM,  a slot time of T, and a laser dead  time of Td, the  capacity in bits  per second is 

C =  log’ bitslsecond. 
MT, + Td 

M may be chosen to maximize this  equation. For the laser used  in this  report, T, = 3.125 x lo-* seconds  and 
Td = 4.32 X seconds, and  an errorless channel capacity is optimized when M = 2082.  For channels that produce 
errors,  more  complicated expressions of capacity result [Hamgga], and  a different optimal value of M emerges. 
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Figure 2. The soft APD  demodulator. 

3. ANALYTIC  RESULTS 
In  Section 3.1, we derive the capacity of APD-detected PPM, in terms of the  PPM order M and  the probability of 
correct  uncoded M-PPM symbol  detection. A detailed  summary of  how to compute  this  probability is then given. 
In Section 3.2 we use the converse to Shannon's  capacity  theorem to derive bounds  on  performance. 

3.1. Capacity of APD-detected PPM 
3.1.1. Capacity as a function of correct PPM symbol detection 

The  capacity of the communications  system  in  Fig. 1 is the maximum mutual information  between the  input  and 
output, 

where H ( 6 )  is the entropy of 6, H(UTJU)  is the conditional  entropy of 6 given U, and I (U;O)  is the  mutual 
information between U and 6. Since the encoder and decoder are deterministic,  invertible  functions, the capacity 
of the system  reduces in the usual way to 

C = maxI(X;  Z) = maxH(Z) - H(Z(X). 
P W   P W  

The channel X + Z is an  M-ary  symmetric channel  (repeated n times), whose capacity  depends on the probability 
of correct  uncoded  symbol  detection p 4 Pr(Xi = Zi). Under the assumptions of perfect timing  and negligible 
inter-slot  interference, the M - 1 possible incorrect decisions are equally likely, and each  incorrect M-PPM symbol 
has  probability q = (1 - p ) / ( M  - 1). The capacity of the  M-ary  symmetric channel is given  by  [Ash651 

C = log, M + p log, p + ( M  - 1)q log, q bits  per  channel use. (1) 

Thus, to compute the capacity of the optical  channel, we need  only determine p .  Note that  the analysis thus far  has 
not  depended  on the particular  type of detector  used, only that  the detector  operates  in a memoryless fashion. 

3.1.2. The probability of correct detection with an APD detector 

A low noise APD enhances the detection of weak optical signals by'amplifying the electrical  current  generated by 
absorbed  photons.  This is illustrated in Fig. 2, in which the diode  symbol  represents the more  complicated solid state 
components of the APD  itself, and some of the APD  parameters  are shown in block diagram  form.  Unfortunately, 
in  addition to amplifying the signal, the APD transforms the simple  Poisson distribution of absorbed  photons  into 
a much  more complicated  probability  density  function at the APD  output.  This pdf is known [Con72,McI72], but 
extremely complex to evaluate numerically. This  Conradi-McIntyre  distribution has been accurately  approximated 
in  a  simpler  formulation by  Webb  [WMC74]. In  particular, the probability that m secondary  electrons are  emitted 
from the  APD  in response to  the absorption of, on  average, fi primary  photons  in a slot, is approximately 



where G is the average  APD  gain, F is the excess  noise factor given by 

and k e f  is the ionization  ratio. For values of m close to its mean Gii, Eq. (2) can be approximated by a Gaussian 
pdf; however, Pr,(mln) departs greatly from a  Gaussian pdf at both  tails, which form the main  contribution to error 
events in decoders [DS88]. 

The  detector  output  x is the sum of the charge  due to  the approximately  Webb-distributed  secondary  electron 
emissions, a contribution from the  APD surface leakage current,  and  Gaussian  distributed  amplifier  thermal noise, 
as shown in  Fig. 2. Because of the  thermal noise, the slot  statistic x is not  necessarily an  integer,  and may even be 
negative. The pdf of the sum  charge is  given by the convolution 

where $(x,pm,a2)  is a Gaussian pdf with  mean p,,, = me- + 13T3 and  variance a2 = (2e-1, + ( ~ K T / R ) ) B T : ,  e- 
is the electron  charge, K is Boltzmann’s  constant, T is the noise temperature, B is the single-sided noise bandwidth, 
and I ,  is the  APD surface leakage current. Note that  Prw(mlfi)  and p(z l i i )  are conditioned  on the mean  number 
of photons effectively absorbed by the  detector, not  incident the  detector.  The relationship  between  incident and 
absorbed  photons is governed by the  quantum efficiency 7 of the  detector, as shown in  Fig. 2. 

The  average  number of absorbed  photons f i  depends on whether the slot  contains the signal. In a signaling  slot, 
ii = r)fis+7fib+Ib/e-;  in  a  nonsignaling  slot, f i  = e+r]fib+Ib/e-.  The Ib/e-  term  represents the additional effective 
absorbed  photons  resulting from the  APD bulk leakage current.  The r/fi,/a,, term represents the  photons absorbed 
when the laser is not  sending a pulse. For practical  purposes, the extinction ratio aeT is often  inconsequential,  being 
as high or  higher than lo6. 

The probability of correct  detection p is  given by 

00 M-1 

p = S_, p(xl7a3 + V f i b  + Ib/e-) [ll p(Yl7fib + v f i s / a e ,  + Ib/e-)&] dx,  (4) 

where p(xlf i)  is the conditional pdf of the detector  slot statistic given that  an average of ii photons are  absorbed by 
the  detector, using  Eq. (3). By plugging Eq. ( 4 )  into Eq. ( l ) ,  the capacity is determined: In cases where Eq .(4) 
is too cumbersome to numerically  evaluate we may  use a simpler expression as a bound and  approximation. Using 
Jensen’s  inequality, p can  be  bounded by [SV98] 

p 2 [1 - ~ ~ p ( ~ l ~ f i s  + v f i b  + Ib/e-) P(yl7fib + v f i , / G e T  + Ib/e-)&dx 7 r I “l (5) 

which  will  give a lower bound  on  capacity when plugged into Eq. (1). This  bound is always tighter than  the union 
bound [Hug92], which implies that  as  the probability of error  gets  small, the  ratio of the  bound  to  the  true value 
tends to one. 

3.2. Implications of the converse of Shannon’s capacity theorem 
The converse of Shannon’s  channel coding theorem  applied to  the communications  system  in  Fig. 1 implies that any 
error  correcting code with code rate R, information  bits  per transmitted bit  satisfies 

R,(log, M ) ( 1 -  %b(Pb)) 5 C ( M ,  a,, f i b ,  T,, detector)  bits  per  channel  use, (6)  

where %(,(x) - x  log, x - (1 - x )  10g2(l - x )  is the binary  entropy  function, and where P b  is the coded  bit  error 
rate. Here, R, log, M is the  rate in  bits per channel  use. Note that capacity is expressed  in bits per  channel  use, 
which removes its dependence on T d .  We may rewrite  Eq. ( 6 )  as 
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Figure 3. Comparison of RS performance to Shannon  limit.  Parameters: M = 256, ii, = 100, T, = 31.25ns, and 
the SLiK APD  detector. (Td is an irrelevant  parameter.) 

For a given code rate R, and fixed ( M ,  fi,,iib,T,,detector),  Eq.  (7) gives the minimum BER p b  that any  rate R, 
code  can achieve on the channel.  Alternatively, we may  write 

For a given desired  error rate, say P b  = lop6, Eq. (8) gives an  upper  bound  on  the code rate, i.e., the percentage 
of the transmission  bits that  carry information. Since the  data  rate Rd = (R, log, M)/(MT,  + Td) this  translates 
directly into a bound  on  the  data  rate  as well, 

4. NUMERICAL  CAPACITY  RESULTS 
All numerical  evaluations were carried out on a 333MHz Pentium I1 using programs  written  in C and  Perl. We 
used parameters  from a 1064nm  pulsed  &-switched Nd:YAG laser having  slot  width T, = 31.25 ns,  required  dead 
time Td = 432000 ns,  and modulation  extinction ratio aer = lo6. This  laser was  chosen based on  its proposed use 
for X2000 2nd delivery [Ort99]. The EG&G SLiK APD has the following parameters: keg = 0.007, T = 300"K, 
R = 1797000, B = & Hz., Ib = 4 x Amp., I ,  = 2 x lo-' Amp., and r ]  = 38%. See Appendix A for a 
description of these  parameters, or [DS88] for a more detailed  explanation. All numerical  results reported  in  the 
paper used an optimized APD gain. We discuss this  optimization in Section 4.4; the optimal  gain varied from 50 to 
200, depending  on the background level. 

4.1. Bit error rate vs. background level 
We used Eq.  (7) to determine the lowest bit  error rate theoretically possible for PPM signaling  using the Nd:YAG 
laser and SLiK APD.  The  capacity was determined by  numerically evaluating  Eq.  (5) and plugging into Eq.s (1); 
substitution  into (7) gives the bound on bit  error rate. Fig. 3 indicates the bounds when M = 256, As can  be  seen, 
when operating at a BER of lop6, the use of rate  7/8 codes  promises the ability to withstand  background levels over 



40dB stronger  than  an uncoded  system. Rate 718 Reed-Solomon (RS)  codes operate within 3.5dB of the limit for 
rate 718 codes. In  an uncoded  system  with M = 256 we must have f i b  5 0.001 in order to achieve a BER of 
with a RS(255,224) code we required f i b  5 7.1; and capacity implies f i b  5 16.0. Note in Table 1 that when M = 64, 
a RS code is further from capacity than when M = 256. 

Table 1. Maximum  background light that can  be  handled while operating  with a coded BER of The  table 
indicates that codes operating at the  Shannon limit can  withstand 2.3 to 7.6dB  higher levels of background  light, 
compared to RS codes. Parameters: M = 256,64,2, R, = 718 or 112, fi, = 100, T, = 31.25 ns, SLiK detector. 

M I R, I f i b ,  Maximum I f i b ,  RS  coding I Difference (dB) 
256 I 7/8 1 16.0 I 7.1  3.5 
64 

475 112 2 
3.6 30.5  69.9 112 64 
2.3 22.5 37.8 1/2 256 

115 718 2 
7.6  5.1 29.3 718 

4.2. Data rate vs. background level 
Using Eq. (9), a bound  on  the highest data  rate possible while operating at a given BER  and ( M ,  fi,, f i b ,  T,, Td, detector) 
was calculated. As f i b  -+ 0, the  data  rate  tends  to  the maximum dictated by M ,  T,, and Td: log, M / ( M T ,  + Td). 
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Figure 4. Capacity of I"PPM on an optical channel, with M E {2,64,256,2048,4096}, pb = A, = 100, 
T, = 31.25 ns, Td = 432000 ns,  and  the SLiK APD  detector. 

Fig. 4 shows the maximum attainable  data  rate for a various M and a range of n b ,  and with fixed A,, T,, Td, and 
detector. Also shown is the RS coding  performance when M = 256. 



4.3. Optimization of PPM order 
Fig.  4 begs the question of what PPM order  optimizes the  data  rate. For nighttime  reception  in which f i b  << 1, the 
optimal PPM order is near M = 2048. This closely  follows the discussion in Section 2.2.2 regarding the errorless 
channel. For daytime  reception in which f i b  M 100, we can see from Fig. 4 that  the optimal PPM order is under 256. 
To be  more  precise, the order of PPM  that maximizes capacity in bits  per second can  be seen directly  from a plot 
of capacity versus M. This is shown in Fig. 5,  and  the  optimal  PPM orders for various values of f i b  are summarized 
in Table 2. 

I I I 

10000 

1 10 100 
M 

1000 

Table 2. Optimal PPM orders M when Pb = fi, = 100, f i b  E {().I, 1,10,50, loo}, T, = 31.25 ns, T d  = 432000 
ns,  and the SLiK APD  detector. 

1815 

100 I 18 

This  suggests use of a multiple PPM order  communications  system.  During  nighttime  reception it should use M 
on the order of thousands,  and  during  daytime reception  it should  use M on the order of dozens. Unoptimized PPM 
orders  can  be costly. As can  be seen  from Fig.  5, using M = 2036 during  the  day would be  disastrous for the  data 
rate. Using M = 18 at night reduces capacity by  over half. 

4.4. APD gain  optimization 
The  APD gain is a parameter  required to evaluate  performance. For example, Eq. (2)  depends  on the gain. All 
numerical  results  in this  report use an optimized  gain. For  each  value of f i b ,  the numerical  capacity or  other needed 
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quantity was computed over a range of gains, and  the largest one chosen. In  the  interest of time,  the  gain was 
restricted to multiples of five. In all cases considered, a gain difference of five (and typically much  more than five) 
from the  optimal value  made little difference  in the numerical results. Shown in Fig. 6 are  the  optimal  gain values. 
Optimal  APD  gains  are also reported in [SV98]. 
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Figure 6. Optimal  gain,  as a function of j i b ,  for fi, = 100, T, = 31.25 ns, T d  = 432000 ns,  and  the SLiK APD 
detector. 

4.5. Comparison of simulation to upper  bound of uncoded APD-detected PPM 
Most numerical  results in this  report required the determining the probability of uncoded PPM symbol  detection 
error. Two  approaches were taken-  simulation  and  bounding. Using the  method given in [DS88] to simulate  the 
statistical  properties of the  APD, a channel was simulated for 100,000 256-PPM symbols. The  probability of uncoded 
symbol  error is shown in Fig. 7, and is compared to  the  upper bound used in Eq. (5) used to derive the remainder of 
the numerical  results in the  report. Since the upper  bound is tighter  than  the union bound,  it necessarily converges 
to  the  true value. We see this  happening, if slowly, in Fig. 7. 

5. CONCLUSIONS 
This  report  considered  an X2000 2nd delivery laser and  detector, representing the  current technology available. 
Capacity was reported in terms of BER vs. background level,  code rate vs. background level, and  data  rate vs. 
background level. Optimization of the PPM order  and APD gain were also discussed. 

Results  indicate that for 256-PPM and  rate 7/8 coding, RS  codes can  handle all but  the  last 3.5 dB of the 
background levels that capacity promises  can  be  handled while operating at a BER of lop6. 

The  optimal value of PPM order  depends greatly on  the background light. For nighttime  reception,  the  optimal 
PPM order was found to be M = 2036,  while  for daytime reception, M = 18. With mismatched PPM order,  the 
capacity reduces by more than a factor of two, which suggests that multiple-order PPM systems  should  be  used if 
feasible. 

Future advances in lasers and  detectors  have  not  been  considered in this report.  Evaluating  capacity for these 
advancements would provide very  useful information  regarding the  limits  at which the  optical channel  can operate. 
This work  is straightforward  but  as of yet undone. 



The  report also gives a  framework that can  be used for evaluating the sensitivity of the capacity to each parameter. 
Holding all  parameters fixed but one, it is possible to show the sensitivity of capacity to each parameter.  This would 
provide  valuable feedback to laser and  detector developers and  to system  designers, who  could then  expend effort in 
the areas  leading to  the biggest system  gains. For the  APD,  this would include a study of the affects of the  quantum 
efficiency, thermal noise levels, dark  currents,  and so forth; for the lasers,  this would include the repetition rate  and 
the pulse  power. Also, note that in this  report we mostly kept fi, fixed at 100 photons  per pulse. It is important to 
know  how the capacity changes for varying f i , .  

Also  unknown is the capacity loss due to  the  hard  PPM symbol  demodulator. Removing it  and providing soft slot 
statistics directly to  the decoder  would  improve capacity, and a study  to quantify this gain would be  an  important 
advancement  in  our  understanding of the optical  channel. 
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APPENDIX  A. PARAMETERS AND NOTATION 
The following is a list of parameters  and  notation used in  this  report. 
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Figure 7. Probability of uncoded 256-PPM symbol error  on  an  optical  channel  with fi, = 100, T, = 31.25ns, and 
the SLiK APD  detector. 



Laser  and Modulator parameters 
M 256, 64, 2 PPM order 
T, 3.125 X lov8 Width of the  PPM slot required by laser, in seconds 
T d  4.32 X Dead time between PPM symbols required by laser,  in seconds 

Received light 

f i b  0.001 - 10,000 Average number of background photons  incident on  the  photodetector,  per slot 
APD detector parameters 

a e r  lo6 Modulation  extinction  ratio 

- 
n.9 100 Average number of signal photons  incident  on the photodetector,  per pulse 

77 38% Quantum efficiency 
“ f f  
T 300  Noise temperature, in Kelvin 
G 50-200 Gain 
R 179700  Load resistance implied  by transimpedance model, 5.75 x 10l2 X T,, in  Ohms 
B 

0.007  Ionization ratio 

1 
2Ts 
- Noise equivalent one-sided bandwidth, in Hz. 

Ib 4 x Bulk  leakage current, in Amperes 
Is 2 x Surface  leakage current, in Amperes 

I E  1.6 x lo-’’ Boltzmann’s  constant,  in  Joules/Kelvin 
Constants 

e- 1.38 X lovz3 Electron  charge, in Coulombs 
Error probabilities 
P Probability of correct uncoded PPM detection 
Cl Probability  uncoded PPM symbol i is detected  as  symbol j ,  j # i. 
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